Previous notes from ch.6:

Principal values create a unique (one) solution:

```
Sin\theta and Tan\theta \rightarrow Quadrant I (+)
```

Quadrant IV (-)

```
Cos\theta \rightarrow Quadrant I (+)
```

Quadrant II (-)

↑ UPPER CASE letters are often used to indicate principal values (domain and range restrictions)

$$\frac{\sin x}{\tan x} - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 Quadrants I,IV

Additional notes:

$$\cos x$$
 $0^{\circ} \le x \le \pi$ Quadrants I,II

NEW!! Ch.5 Inverse Notation:

$$\frac{1}{2}$$
 has the same meaning as $\sin^{-1}\frac{1}{2}$

IMPORTANT! Both can be rewritten as: $\sin \theta = \frac{1}{2}$

$$\frac{\sqrt{2}}{2}$$
 has the same meaning as $\cos^{-1}\frac{\sqrt{2}}{2}$ arctan $\sqrt{3}$ has the same meaning as $\tan^{-1}\sqrt{3}$

Summary of ch.5 Inverse Notation:

Sin⁻¹(½) and Arcsin(½) both indicate you are performing an inverse operation (not a reciprocal!!!)

Therefore... $Sin^{-1}(\frac{1}{2})$ and $Arcsin(\frac{1}{2})$ can both be rewritten as $Sinx = \frac{1}{2}$.

*Similar idea:

 $\sqrt{9}$ indicates an operation.

although it can be rewritten as $x^2 = 9$

TODAY'S ASSIGNMENT #1-30...NO CALCULATOR!

Ch.5 Unit Circle Practice

NAME:

PER:

A. Define each function in terms of x and y (based on the unit circle with r = 1)

$$\frac{9}{\sqrt{9}}\sin\theta = \frac{9}{\sqrt{9}}$$

 $\cos \theta = \left(\times \right)$

 $\tan \theta = \sqrt{\frac{9}{x}}$

 $\csc \theta = \frac{1}{\sqrt{}}$

sec θ = _

 $\cot \theta = \frac{\times}{9}$

B. Principal Values: To find a unique solution for $\sin x$ and $\tan x$, refer only to Quadrant $\frac{1}{2}$ or $\frac{1}{2}$

To find a unique solution for cos x, refer only to Quadrant $\frac{1}{2}$ or $\frac{1}{2}$

Check answers A, B, and #1-30:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 -1 1 0 0 0 -1 2	$ \frac{-1}{2} $ $ \frac{1}{2} $ $ -\sqrt{2} $ $ \frac{\sqrt{2}}{2} $	$ \frac{-\sqrt{3}}{2} $ $ \frac{-\sqrt{3}}{2} $ $ \frac{-\sqrt{3}}{2} $ $ \frac{-\sqrt{3}}{2} $ $ \frac{1}{2}$	$\frac{\sqrt{3}}{2}$ $-\sqrt{3}$ $-\sqrt{3}$ $-\sqrt{3}$ $\sqrt{3}$ I	6	$\frac{4\pi}{3}$	$\frac{4}{3\pi}$	$\frac{5\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{2}$
---	--------------------	---	--	---	---	------------------	------------------	---

Refer to one of your unit circles resource pages from the past few days to answer the following questions:

 $\left(\frac{y}{x}\right)$ tan $\theta=1$

 $\frac{g}{x}$ tan $\theta = 0$

Refer to x and y coordinates on unit circle to identify the proper angle.

Sin D = - 52

SIND = D

Hint: TWO general solutions each!!

(21.) arctan (1) =

HINT: same as tan-1(1)

 \rightarrow rewrite as tan $\theta = 1$, then evaluate

(22.)
$$tan^{-1}(0) = \boxed{0}$$

 $(23.)\sin^{-1}\left(\frac{-2\sqrt{3}}{4\sqrt{2}}\right) = \frac{4\pi}{3}$

24. arccos (0) =

25.
$$\cos^{-1}\left(\frac{-\sqrt{2}}{2}\right) =$$

26.
$$\arcsin\left(\frac{1}{2}\right) =$$

Hint: ONE solution each!!

Sine and Tangent have principal values in quadrants I and IV only.

28. Arctan
$$(\frac{\sqrt{3}}{3}) =$$
 use

30. Arctan $\left(\frac{-4\sqrt{3}}{4}\right) =$ angle

Hint for #1-20: add or subtract a rotation of 2π if given angle is less than 0 or greater than 2π

Refer to one of your unit circles resource pages from the past few days to answer the following questions:

Evaluate using exact answers.

No calculator!!

$$1. \quad \sin \frac{5\pi}{3} =$$

2.
$$\cos \frac{5\pi}{6} =$$

3.
$$\tan \frac{2\pi}{4} =$$

4.
$$\tan\left(-\frac{5\pi}{4}\right) =$$

5.
$$\cos \frac{8\pi}{3} =$$

6.
$$\cos\left(-\frac{5\pi}{6}\right) =$$

7.
$$\tan \frac{7\pi}{4}$$
 =

8.
$$\sin \frac{3\pi}{4} =$$

9.
$$\cos \frac{11\pi}{6} =$$

10.
$$\tan \frac{10\pi}{6} =$$

11.
$$\sin \frac{5\pi}{2} =$$

12.
$$\tan \frac{5\pi}{6} =$$

13.
$$\sin \pi =$$

14.
$$\sin \frac{5\pi}{4} =$$

15.
$$\tan \frac{8\pi}{6} =$$

16.
$$\sin \frac{19\pi}{6} =$$

17.
$$\cos \frac{5\pi}{3} =$$

18.
$$\tan \frac{5\pi}{4} =$$

19.
$$\cos \frac{5\pi}{6} =$$

20.
$$\tan \left(-\frac{4\pi}{3}\right) =$$

Hint for #1-20: add or subtract a rotation of 2π if given angle is less than 0 or greater than 2π

$$\frac{-\sqrt{3}}{2}, \frac{1}{2}$$

$$\frac{-\sqrt{3}}{2}, \frac{1}{2}$$

$$\frac{-\sqrt{3}}{2}, \frac{1}{2}$$

$$\frac{-\sqrt{3}}{2}, \frac{1}{2}$$

$$\frac{-\sqrt{3}}{2}, \frac{1}{2}$$

$$\frac{-\sqrt{3}}{2}, \frac{1}{2}$$

$$\frac{1}{2}, \frac{\sqrt{3}}{2}$$

$$\frac{1}{2}, \frac{\sqrt{3}}{2}$$