## Previous notes from ch.6:

Principal values create a unique (one) solution:
$\operatorname{Sin} \theta$ and $\operatorname{Tan} \theta \rightarrow$ Quadrant I (+)
Quadrant IV (-)
$\operatorname{Cos} \theta \rightarrow$ Quadrant I (+) Quadrant II (-)
$\uparrow$ UPPER CASE letters are often used to indicate principal values (domain and range restrictions)


## NEW!! Ch. 5 Inverse Notation:

$\arcsin \frac{1}{2}$ has the same meaning as $\sin ^{-1} \frac{1}{2}$
IMPORTANT: Both can be rewritten as: $\sin \theta=\frac{1}{2}$
$\arccos \frac{\sqrt{2}}{2}$ has the same meaning as $\cos ^{-1} \frac{\sqrt{2}}{2}$
$\arctan \sqrt{3}$ has the same meaning as $\tan ^{-1} \sqrt{3}$

## Summary of ch. 5 Inverse Notation:

$\operatorname{Sin}^{-1}(1 / 2)$ and $\operatorname{Arcsin}(1 / 2)$ both indicate you are performing an inverse operation (not a reciprocal!!!)

Therefore... $\operatorname{Sin}^{-1}(1 / 2)$ and $\operatorname{Arcsin}(1 / 2)$ can both be rewritten as $\operatorname{Sin} x=1 / 2$.
*Similar idea:
$\sqrt{9}$ indicates an operation.
although it can be rewritten as $\mathrm{x}^{2}=9$

## TODAY'S ASSIGNMENT \#1-30...NO CALCULATOR!

## Ch. 5 Unit Circle Practice

NAME:
PER:
A. Define each function in terms of $x$ and $y$ (based on the unit circle with $r=1$ ) $\frac{y}{r} \sin \theta=Y \frac{\cos }{r} \theta=X \quad \tan \theta=\frac{y}{x} \quad \csc \theta=\frac{1}{y} \quad \sec \theta=\frac{1}{x} \quad \cot \theta=\frac{x}{y}$
B. Principal Values: To find a unique solution for $\sin x$ and $\tan x$, refer only to Quadrant I or V

To find a unique solution for $\cos x$, refer only to Quadrant $\frac{I}{+}$ or $\frac{\pi}{-}$

Check answers A, B, and \#1-30:


Refer to one of your unit circles resource pages from the past few days to answer the following questions:


Hint for \#1-20: add or subtract a rotation of $2 \pi$ if given angle is less than 0 or greater than $2 \pi$

Refer to one of your unit circles resource pages from the past few days to answer the following questions:

Evaluate using exact answers.
No calculator!!

1. $\sin \frac{5 \pi}{3}=$
2. $\cos \frac{5 \pi}{6}=$
3. $\tan \frac{2 \pi}{4}=$
4. $\tan \left(-\frac{5 \pi}{4}\right)=$
5. $\cos \frac{8 \pi}{3}=$
6. $\cos \left(-\frac{5 \pi}{6}\right)=$
7. $\tan \frac{7 \pi}{4}=$
8. $\sin \frac{3 \pi}{4}=$
9. $\cos \frac{11 \pi}{6}=$
10. $\tan \frac{10 \pi}{6}=$
11. $\sin \frac{5 \pi}{2}=$
12. $\tan \frac{5 \pi}{6}=$
13. $\sin \pi=$
14. $\sin \frac{5 \pi}{4}=$
15. $\tan \frac{8 \pi}{6}=$
16. $\sin \frac{19 \pi}{6}=$
17. $\cos \frac{5 \pi}{3}=$
18. $\tan \frac{5 \pi}{4}=$
19. $\cos \frac{5 \pi}{6}=$
20. $\tan \left(-\frac{4 \pi}{3}\right)=$

Hint for \#1-20: add or subtract a rotation of $2 \pi$ if given angle is less than 0 or greater than $2 \pi$



